

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: SSP701S	COURSE NAME: SOLID STATE PHYSICS
SESSION: JUNE 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER(S)	Prof Dipti R. Sahu	
MODERATOR:	Dr Zivayi Chiguvare	

INSTRUCTIONS		
1.	Answer all five questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Ques	tion 1	[20]
1.1	Calculate the lattice constant of Iron. Given density of iron 7.86 kg/cm 3 , atomic weight of iron 55.85 and Avogadro's number 6.023 x 10^{26} /kmol.	(4)
1.2	Sketch the unit cell and show the following planes (112), (101), (123)	(6)
2.3	Show that the atomic packing factor for FCC and HCP metals are the same.	(10)
Quest	tion 2	[20]
2.1	What is Madelung constant? What is its significance?	(4)
2.2	How are secondary bonds formed? Give names of secondary bonds.	(6)
2.3	Compute the net potential energy of a simple Na $^+$ Cl $^-$ pair. The equilibrium distance between the ions is 0.28nm. The potential energy due to repulsion between electron sis given by $U_r = \beta/r^8$	(10)
Quest	tion 3	[20]
3.1	What is meant by phonons? Do phonons have mass?	(4)
3.2	What is lattice wave? Calculate the value of cutoff frequency in a solid assuming a linear lattice. If velocity of sound in a solid is 3×10^3 m/s and Interatomic distance is 5×10^{-10} m.	(6)
3.3	What is Einstein theory of specific heat? Derive an expression for heat capacity of a solid based on Einstein theory.	(10)
Quest	tion 4	[20]
4.1	Give the assumptions of the classical free electron theory.	(4)
4.2	State and explain Wiedemann-Franz law? Calculate Lorentz number, given the thermal and electrical conductivities of Cu at 20 $^{\circ}$ C are 390 Wm $^{-1}$ K $^{-1}$ and 5.87 x10 $^{7}\Omega^{-1}$ m $^{-1}$ respectively	(6)
13	Using the free electron mode, derive an expression for electrical conductivity in metals	(10)

Question 5

[20]

5.1 Show that the probability of occupancy of energy level E by an electron is 50% for $E = E_F$ at temperature $(T \neq 0K)$.

- (4)
- 5.2 Indicate on an energy level diagram the conduction and valence bands, donor and acceptor states and the position of Fermi level for
 - (i) an intrinsic semiconductor.
 - (ii) a n-type semiconductor.
 - (iii) a p-type semiconductor.

(6)

5.3 Define mobility of a carrier of current. How is it related to the Hall coefficient? Is the mobility of an electron in the conduction band of a semiconductor the same as the mobility of an electron (or hole) in the valence band? Give reason for your answer.

(10)

Given fundamental constants

Speed of light = $3x10^8$ m/s Planck constant = 6.626×10^{-34} Js Mass of electron= 9.1×10^{-31} kg Charge of electron = 1. 6×10^{-19} C Avogadro number= 6.022×10^{23} /mole Boltzmann Constant = 1.38×10^{-23} JK⁻¹

-----END-----